FKP Institite of AI
FKP Institite of AI
  • Home
  • All Courses
    • Open AI
    • Vertex AI
    • Machine Learning
    • Data Engineering Basics
    • AWS Cloud Data Engineer
    • DevOps for Data Engineers
    • Python for Data Engineers
    • DBT - Data Build Tool
    • Snowflake Data Engineer
  • More
    • Home
    • All Courses
      • Open AI
      • Vertex AI
      • Machine Learning
      • Data Engineering Basics
      • AWS Cloud Data Engineer
      • DevOps for Data Engineers
      • Python for Data Engineers
      • DBT - Data Build Tool
      • Snowflake Data Engineer
  • Sign In
  • Create Account

  • My Account
  • Signed in as:

  • filler@godaddy.com


  • My Account
  • Sign out


Signed in as:

filler@godaddy.com

  • Home
  • All Courses
    • Open AI
    • Vertex AI
    • Machine Learning
    • Data Engineering Basics
    • AWS Cloud Data Engineer
    • DevOps for Data Engineers
    • Python for Data Engineers
    • DBT - Data Build Tool
    • Snowflake Data Engineer

Account


  • My Account
  • Sign out


  • Sign In
  • My Account

AWS - Data Engineering

START COURSE

AWS Data Engineering

Introduction

  • Difference between ETL and ELT
  • What is DBT
  • What is DBT Cloud
  • Essential steps in the development of data pipelines
  • Need for ELT templatization
  • Pre-requisites, installing DBT and configuring a DBT project.
  • Discussion on supporting databases
  • Creating a Snowflake account and creating needed database objects
  • Introduction to Jinja


Kinesis

  • AWS Kinesis and sub-services

              - Data Firehose

                 - Create a Firehose client using boto3.

              - Data Streams

                 - List the Data streams under the Firehose

                 - Delete the Data streams

                 - Create a Data stream

 

import boto3, pandas as pd
# Load Data
data_url = "https://assets.datacamp.com/production/repositories/5668/datasets/6bba555e0e42ae31d1d634256679db718cfb8d76/vehicles.csv"

records = pd.read_csv(data_url).sample(100)

# Create a firehose client
firehose = boto3.client('firehose', 
aws_access_key_id="None", 
aws_secret_access_key="None", 
region_name='us-east-1', 
endpoint_url="http://localhost:4573")


# Create a s3 client

s3 = boto3.client('s3', 
aws_access_key_id="None", 
aws_secret_access_key="None", 
region_name='us-east-1', 
endpoint_url="http://localhost:4572")


# Create s3 bucket
s3.create_bucket(Bucket='sd-vehicle-data')

# Create a Firehose delivery stream
res = firehose.create_delivery_stream(
DeliveryStreamName="gps-delivery-stream",
DeliveryStreamType="DirectPut",

# specify the S3 bucket, which is our destination
S3DestinationConfiguration = {
"BucketARN": "arn:aws:s3:::sd-vehicle-data",
"RoleARN": "arn:aws:iam::0000000:role/firehoseDeliveryRole"
})
# Print the stream ARN
print("Firehose Stream ARN is: {}".format(res['DeliveryStreamARN']))

for idx, row in records.iterrows(): 
    payload = ' '.join(str(value) for value in row) 
    payload = payload + "\n"
   print("Sending payload: {}".format(payload))
   res = firehose.put_record(
        DeliveryStreamName = 'gps-delivery-stream',
        Record = {'Data': payload})
   print("Record Id is: {}".format(res['RecordId']))

objects = s3.list_objects(Bucket='sd-vehicle-data')['Contents']

df = []
for obj in objects:
    data_file = s3.get_object(Bucket='sd-vehicle-data', Key=obj['Key'])
    dfs.append(pd.read_csv(data_file['Body'],  delimiter = " ",  names= ["record_id", "timestamp", "vin", "lon", "lat", "speed"]))
data = pd.concat(dfs)
print(data.groupby(['vin'])['speed'].max())


              - Data Analytics


Introduction to Lambda &  Step unctions

  • What is a Lambda function and when to use the Lambda functions
  • Limitations of Lambda functions
  • AWS Lambda features
  • What is a Step function and when to use it
  • Features of Step functions
  • Creating a Lambda function from the blueprint
  • Adding CloudWatch events and alerts
  • Creating an alarm 
  • Using AWS CLI to create Lambda function
  • Using AWS CLI to CloudWatch events and alerts


Creating an AWS free account and Launch the EC2 Instance

  • Selecting the aws Linux free tire t2.micro
  • Create a role and assign the AmazonS3FullAccess profile.
  • Start working in the EC2 instance (ssh command).
  • ssh -i "C:\Users\farid\Downloads\Farid_EC2_Keys.pem" ec2-user@ec2-13-233-115-179.ap-south-1.compute.amazonaws.com


Creating and using the virtual environment

  • Creating a dependencies/ requirements file (etl_requirments.txt) for Lambda to use. 


Working with Lambda

  • What is a Lambda layer?
  • Create a Lambda layer
  • Creating a Lambda function and adding layers
  • Adding the code to the Lambda function and testing.
  • Creating rules 



Performing data testing

  • Advantages of the Test feature
  • Working with basic tests and tests folder
  • Unique, not null, and relationship/or references
  • Running the DBT tests
  • Wring the custom tests


Working with DBT Cloud




  • Home
  • Open AI
  • Vertex AI
  • Machine Learning
  • Data Engineering Basics
  • AWS Cloud Data Engineer
  • DevOps for Data Engineers
  • Python for Data Engineers
  • DBT - Data Build Tool
  • Snowflake Data Engineer

FKP Institite of AI

Copyright © 2023 FKP Institite of AI - All Rights Reserved.

One Stop for Data Engineering Courses

We Simplify practical understanding of today's cutting edge Technologies. 

Know more

This website uses cookies.

We use cookies to analyze website traffic and optimize your website experience. By accepting our use of cookies, your data will be aggregated with all other user data.

Accept